Machine Learning with CMS Public Healthcare Dataset, Part II

Introduction to CMS OpenPayments Data Analysis using Machine Learning

In the previous blog we discussed the fundamental concept of what Machine Learning is and how it can be applied in the modern world of Pharmaceuticals and Healthcare, further to this we explored CMS Open Payments, the federal program that collects information about the payments drug and device companies make to their potential clients.


Machine Learning with CMS Public Healthcare Dataset, Part I


From the outset, the term “Machine Learning” can seem very daunting to those unfamiliar with the technicalities of what this actually means, or so it seemed to me when I was initially assigned to develop a use case for one of these algorithms during my time here at RxDataScience.  From a quick study into the topic, Machine Learning (ML), put simply, is a branch of Artificial Intelligence (AI) that allows a system to automatically learn and improve itself without being explicitly instructed to, by using past and present data to predict certain outcomes [1].  The following video provides a gentle introduction into what ML is all about:


Mental Health and Big Data: A Step in the Right Direction

  • Kate Spade – depression and anxiety
  • Robin Williams – severe depression
  • Pete Davidson – Borderline Personality Disorder
  • Demi Lovato – Bipolar disorder

Two gone, two battling a lifelong battle, like many Americans. With the stigma and bias surrounding the topic, the mental health community struggles to move forward. The research and treatment is at least a decade behind common chronic conditions, mainly because no one wants to talk about mental health due to the complexity and lack of understanding. 


Human Activity Recognition Using Pharma ML and IoT Devices, Part II

Decision Trees

As mentioned in my previous exert, I will be delving further into the complexity of the algorithm I used in my study. Following some research into decision trees and the impact they have had on healthcare and pharma I found that their presence has been assisting across the field since the early 90’s in the form of Evidence Based Medicine (EBM). The stages detailed in this process where summarised to:


Human Activity Recognition Using Machine Learning & iOT Devices, Part I


Coming from a background in computer science, I was familiar with Machine Learning and its capabilities although admittedly I had never considered the impact it could have on the world of healthcare.  Subsequent to joining the team here at RxDataScience, I was tasked with implementing a decision tree, in order to detect what activity a person, in a room was undertaking using data collected via a radio frequency identification tag and sensors mounted in corners of the room.


Delivering Value from LAAD

IMS Health’s Longitudinal Access and Adjudication Data (LAAD) has revolutionized how companies view data, and structures the information in an easier way for all parties involved. In short, “LAAD is an anonymized patient sample dataset that captures longitudinal pharmacy (both retail and specialty) and medical claims. It was used to quantify payer channel distribution, co-pay card penetration, and low-income subsidy prevalence for these products.”


Machine Learning for Pharma using Random Forest, Part II

Introduction to Machine Learning with Random Forest (Pharma/Genetics)

To pick up where we left off last blog post, we discussed the potential of predictive analytics in the genetics of cancer. I aim to achieve this by using the aforementioned Random Forest classification algorithm.


Deep Diving into the Genetics of Cancer – An MLPerspective, Part I

Machine Learning in Genomics & Cancer Treatment

When I first arrived in the RxDS (RxDataScience) Headquarters here in the Research Triangle Park as a Machine Learning researcher, I was informed that my first task would be to ‘Redefine Cancer Treatment’. As I’m sure you can understand, coming from a scientific background my curiosity levels were sky high. I was told that the key to bringing personalized medicine to cancer could be found within the genomes of cancer patients. Therein lies a multitude of mutations and variants, with some being benign passengers in this journey and others the core malignant drivers of the cancer itself (McFarland, Mirny and Korolev, 2014). Successfully interpreting these mutations and variants, using either traditional methods or contemporary data science solutions could lead to new treatments with each giving patients with the same underlying causes a fighting chance to overcome their individual cancers.


Big Data Application in Healthcare For Effective Patient Treatment

Within the first decade of the 21st century, the use of big data became very popular in many big industries. The methods for capturing big data have since evolved from traditional data lake systems to more integrated technologies that combine big data with all other systems within a company.1


Machine Learning and AI in Healthcare: Practical Applications (Part 2)

How can AI technology improve the healthcare industry?

Our last blog post explored the implications of a recent study on artificial intelligence (AI) and machine learning business application. While the healthcare industry can expect incredible benefits from the adoption of AI technology, it remains under-adopted and receives below-average attention when compared to other industries.

This post aims to highlight the areas within healthcare where AI has potential. This technology can improve operations, patient experiences, medical procedures, and solve regulatory challenges.